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Abstract

Low Temperature Combustion (LTC) is a combustion strategy that burns fuel at

lower temperatures and leaner mixtures in order to achieve high efficiency and near

zero NOx emissions. Since the combustion happens at lower temperatures it inhibits

the formation of NOx and soot emissions. One such strategy is Reactivity Controlled

Compression Ignition (RCCI). One characteristic of RCCI combustion and LTC com-

bustion in general is short burn durations which leads to high Pressure Rise Rates

(PRR). This limits the operation of these engines to lower loads as at high loads, the

Maximum Pressure Rise Rate (MPRR) hinders the use of this combustion strategy.

This thesis focuses on the development of a model based controller that can control

the Crank Angle for 50% mass fraction burn (CA50) and Indicated Mean Effective

Pressure (IMEP) of an RCCI engine while limiting the MPRR to a pre determined

limit. A Control Oriented Model (COM) is developed to predict the MPRR in an

RCCI engine. This COM is then validated against experimental data. A statistical

analysis of the experimental data is conducted to understand the accuracy of the

COM. The results show that the COM is able to predict the MPRR with reasonable

accuracy in steady state and transient conditions. Also, the COM is able to capture

the trends during transient operation. This COM is then included in an existing

cycle by cycle dynamic RCCI engine model and used to develop a Linear Parameter

xxvii



Varying (LPV) representation of an RCCI engine using Data Driven Modeling (DDM)

approach with Support Vector Machines (SVM). This LPV representation is then used

along with a Model Predictive Controller (MPC) to control the CA50 and IMEP of

the RCCI engine model while limiting the MPRR. The controller was able to track

the desired CA50 and IMEP with a mean error of 0.9 CAD and 4.7 KPa respectively

while maintaining the MPRR below 5.8 bar/CAD.

xxviii



Chapter 1

Introduction

The use of fossil fuels and the extent of environmental damage it has caused in

the past few decades has driven the industry and the society in general towards

tougher regulations and control of the use of the fuels. Automobiles being one of the

largest consumers of fossil fuel has been presented with the challenge of improving

the efficiency of the machines and reduce the extent of pollution caused by them

[7, 8]. Automobiles are the largest producers of CO2 emissions right after electricity

generation [9, 10]. Hence, the regulating bodies in the USA, have set high standards

for fuel economy and emissions for 2025 [11]. However, the projected use of fossil

fuels is not going down [12]. Even by 2040 fossil fuels are projected to be the largest

producers of energy over other sources. In order to meet the regulations and achieve

the level of efficiency necessary, the automotive industry has been working on various

1



types of technologies [13]. Diesel is more efficient than gasoline but produces higher

emissions of Nitrogen Oxides (NOx) and Particulate Matter (PM) [14]. Processing

these emissions requires catalytic converters. But, the cost of catalytic converters

is rising with increase in complexity. Various technologies such as turbo-charging,

cylinder deactivation and GDI have been explored but every added technology adds

a certain cost making the development and by implication the cost of the product

higher [13].

In order to meet the emission and fuel economy regulations, it is necessary to achieve

a higher efficiency for the ICE while reducing its emissions. Higher efficiencies can be

achieved by reducing the losses within the ICE. However, different emission particles

need different strategies to avoid them. NOx can be avoided by having lower temper-

ature combustion while PM can be avoided by eliminating the chance of formation

of rich mixture pockets and having a homogenous mixture of fuel and air [3].

Low Temperature Combustion (LTC) strategies have gained attention over the past

years [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28? ] as a potential solution. All

LTC strategies work with lean combustion thus reducing the peak temperatures of the

cylinder and hence reducing the heat losses to the wall [18] and also reducing the NOx

emissions [19, 20]. Some of them use a strategy for mixing two fuels. Some involve

unthrottled intake of air thus reducing throttling losses. They form a homogenous

mixture of the fuels thus reducing local rich regions, hence avoiding the PM emissions.

2



However, HC and CO emissions are an area of concern due to low temperatures not

favoring their oxidation and also they suffer from increased chances of misfires [3].

There are multiple strategies within LTC regimes. A comparison of their emissions

with conventional diesel combustion is shown in Figure 1.1. It can be sen that the LTC

regimes Homogenous Charge Compression Ignition (HCCI), Reactivity Controlled

Compression Ignition (RCCI) and Premixed Charge Compression Ignition (PCCI)

avoid the regions of temperature and equivalence ratio where soot or NOx is formed.

However, it should also be noted that the range of operation of LTC regimes is smaller

than that of conventional diesel combustion.

Figure 1.1: Emission maps of LTC strategies [26]

3



1.1 LTC strategies

There are multiple LTC strategies each having a different homogeneity of mixture and

stratification of the charge. HCCI combustion strategy has a homogenous mixture

throughout. A homogenous mixture of air and fuel is injected and compressed to auto

ignition. This leads to a very short combustion duration and almost constant volume

combustion of the mixture which can lead to knock. Hence, HCCI combustion is

knock limited at higher loads. Also, there is no direct control for combustion phasing

such as injection timing for compression ignition and spark timing for spark ignition.

It further suffers from the lack of control of heat release rate which is done with fuel

flow in Compression Ignition engines and turbulent flame propagation in SI engines.

[29, 30].

Premixed Charge Compression Ignition (PCCI) is another strategy that tries to over-

come the challenges of HCCI. The fuel is injected early directly into the cylinder

which then creates a homogenous mixture for auto ignition. The same strategy is

called Partially Premixed Compression Ignition (PPCI) if the injection is done late

into the compression stroke [31]. This is because the mixing of the fuel and air within

the cylinder is only partial as the fuel is injected closer to TDC and there is not much

time for the fuel and air to mix. This strategy gave control over the combustion

phasing with the Start of Injection (SOI) and over the heat release rate with the
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amount of fuel added [32]. However, PPCI of diesel required higher rates of Exhaust

Gas Recirculation (EGR) to maintain low NOx and PM emissions while the gasoline

PPCI generated higher NOx emissions and lower efficiency [15, 16]. PCCI was ex-

plored further using either diesel and gasoline, [17, 32] which led to the development

of a dual injection strategy which allowed control over combustion phasing with SOI.

Work by Bessonette et al. [33] suggested that the use of fuel blends has the potential

to increase the operating range of HCCI engines. They had achieved an increase of

60% in the peak load to 16 bar. They had also observed that for low load combustion,

a fuel of derived cetane number ≈45 was necessary. In addition, research by Inagaki

et al. [24] showed that the use of premixed fuels can help reduce the rate of heat

release and also combustion noise. This encouraged the research by Kokjohn et al.

into the use of dual fuels in an HCCI regime [23]. A high reactivity fuel similar to

diesel or n-heptane and a low reactivity fuel similar to gasoline or iso-octane were

to be injected into the cylinder to form a mixture. This then gave a direct control

over the reactivity of the charge within the cylinder. Kokjohn et al. named it as

Reactivity Controlled Compression Ignition (RCCI) [25, 27]. To achieve the dual fuel

combustion, the low reactivity fuel is injected into the cylinder via port fuel injection

and the high reactivity fuel is injected into the cylinder via direct injection. RCCI is

an improvement over the PCCI and PPCI strategies. It has a better control over the

combustion phasing and the heat release rate. By controlling the amount of reactivity

within the chamber RCCI is able to control the combustion events in the cylinder
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more effectively when compared to other LTC strategies. The stratification of fuel

reactivity leads to staged combustion of the fuel with the higher reactive fuel auto

igniting first and then low reactivity fuel burns. This leads to a longer duration of

combustion when compared to HCCI and thus reduces the Maximum Pressure Rise

Rate (MPRR) within the cylinder.

Figure 1.2: Recent studies in RCCI research [34, 35, 36, 37, 38, 39, 40]

RCCI combustion still has some challenges to overcome. Some of the notable recent

studies into RCCI engines are shown in Fig. 1.2. As all LTC strategies, RCCI also suf-

fers from high Unburnt Hydrocarbons (UHC) and Carbon Monoxide (CO) emissions.
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The required EGR for high loads is very high [23] and the required Compression Ratio

(CR) is also low [41]. This then led to the study of using fuels other than gasoline

such as natural gas and ethanol and the use of mode switching strategies between

RCCI and Conventional Diesel Combustion (CDC). The emission characteristics have

also been studied [42, 43] along with the study of piston bowl geometry effects on the

combustion [44, 45]. It has been observed that use of fuels such as E85 can increase

the operating range of the RCCI engine. However, it also leads to increased HC and

CO emissions at low loads due to the inherent low temperatures of the combustion

process [43]. Natural Gas also has shown some good results. It has shown that the

Natural Gas-RCCI engine can achieve 13.5 bar Indicated Mean Effective Pressure

(IMEP) with no EGR with acceptable NOx and CO emissions [41].

Figure 1.3: Gasoline-Diesel (left) vs Ethanol-Diesel (right) operating points
[43]

Further studies by changing various parameters to increase combustion efficiency and

decrease emissions have been done. Poorghasemi et al. [34] have shown that by
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varying the amount of diesel fraction and the pressure and timing of the injections

of fuel into the cylinder, the indicated efficiency and the emissions of the engine

can be improved [34]. Li et al. have recently conducted simulation studies with

a gasoline bio-diesel RCCI regime where they found that by varying the dwell of

the injection of bio diesel could help mitigate MPRR and also reduce NO and soot

emissions [36]. Mikulski et al. [35] have conducted simulation studies on the effect of

directly injecting low reactivity fuel, in this case Natural Gas, into the cylinder. It

was observed that there is potential for improvement of RCCI combustion efficiency,

overall indicated efficiency and methane emissions in low load conditions. However,

an increase in NOx emissions has also been noted. Benajes et al. have also performed

experimental studies that show that increase of efficiency in low loads is possible by

increasing the in-cylinder fuel reactivity gradient and also that the EURO VI NOx

and soot emissions can be met along with a reduction in CO and HC emissions [37].

Pedrozo et al. have conducted experimental studies that have shown that the use

of ethanol can increase the efficiency of the dual fuel operation beyond conventional

diesel and that NOx and soot emissions can be reduced significantly [38].

One of the major drivers for study in LTC regimes is the need to meet the emission

standards. Simulation studies by Xu et al. have shown that a NG/Diesel engine

with VVT can be optimized to meet Euro VI emission standards with little use of

after treatment device for high loads [40]. Experimental studies by Benajes et al.

have shown that RCCI strategy can be extended to operate over the entire engine
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load speed range when combined with diffusive dual fuel strategies for combustion

of gasoline-diesel [39]. The study showed that EURO VI emission standards can

be achieved up until 14 bar IMEP reducing the need and use of after treatment

systems. But, the same strategy has shown that although NOx emissions are reduced

drastically, the CO and HC emissions are higher [46]. The trend of studies is moving

towards dual fuel combustion, using two different combustion strategies to achieve the

load required. Both RCCI/CDC and RCCI/diffusive dual fuel combustion have been

explored [39, 46, 47]. But, as noted above, both the strategies still suffer from high

HC and CO emissions and need an after treatment system to reduce the emissions

1.2 RCCI control

RCCI has been the focus of research in LTC over the past few years. However, the

number of studies in closed loop control of RCCI engines is not very high. For RCCI

engines to become viable a robust controller is necessary. Even though RCCI offers

better control over combustion phasing and Heat Release Rate (HRR), the number

of actuators and sensors involved make it really hard and expensive for map-based

control. It was also observed through simulation that the RCCI engine is sensitive

to the injection timing of the fuel. Hence a precise control of injector is needed [45]

which requires an understanding of the injector performance of both the port and

direct injector. It is known that port injector systems are very dynamic [48, 49]
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and their control can be achieved better with model based controllers. Hence, a

control strategy that can handle the complexity of an RCCI engine control while

being computationally light has to be designed to be used real time. In order to

control the RCCI engine reliably in different conditions it is important to be able

to control it during the transient states. This can be achieved effectively with a

model-based controller.

Figure 1.4: Prior work in RCCI control [1, 3, 4, 5, 50, 51, 52, 53]

Early studies into the control of RCCI engines did not involve model based control.

Wu et al. had worked on a rule based strategy for control of the CA50 of an RCCI

engine during load transients. To develop a control strategy, a CA50 vs PFI (Port

Fuel Injection) ratio map was generated for different cycle numbers right after the

transition from 1 bar to 4 bar IMEP and from 4 bar to 1 bar IMEP. This map was
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then used to create a strategy for changing the PFI at the appropriate cycle after

a change in IMEP was detected. This though gives an insight into how CA50 can

be controlled, is not a very efficient solution since it is rule based and would require

extensive experiments and tests to cover all operating points and conditions while

capturing the transients.

Some model-based controllers have been developed in the recent years. Sadabadi et

al. developed a physics based control oriented model (COM) which was validated

with a CFD model simulation that was experimentally validated [1]. The COM uses

a Modified Knock Integral Model (MKIM) to detect the start of combustion (SOC)

of the mixture within the cylinder of an RCCI engine. The MKIM was modified from

the Knock Integral Model which was developed by Livengood et al. [54] for detecting

knock in SI engines. The MKIM was also used for detecting SOC in diesel and

HCCI engines [55, 56]. The model was later augmented with the addition of modified

Wiebe function to predict the CA50. This COM was then used as a plant model

for an RCCI engine to develop an LQI controller to control CA50 using Premixed

Ratio (PR). However, PR has slower response time, due to fuel transport dynamics

[48], than SOI which can be a better control input for CA50 control. However, this

study did not include the control of IMEP but provided a good base COM for further

studies.

A study was undertaken by Kannan et al. [2] and later by Jayant et al. [53] to
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Figure 1.5: LQI controller implemented by Sadabadi et al. [1]

understand the effect of different control knobs on the combustion of RCCI engine

and to develop a PI controller for control of CA50 and IMEP and mode switching

with SI to improve operating range. A PI controller was then implemented for real

time control of an RCCI engine. The implementation on the RCCI engine showed

that there is cyclic variability and that it has to be addressed for smooth operation

and consistent control as shown in Figure 1.6. Kondipati et al. [3] explored different

control knobs for the control of combustion phasing. A sensitivity map was generated

for CA50 vs SOI and PR. This was proposed to be used as a trigger for controlling

CA50 using SOI or PR depending on the point of operation.

A dynamic model for fuel and air transport during transients was developed by Shah-

bakhti et al. [4, 48]. This model was used to augment the COM developed by

Sadabadi et al. [4]. This COM was then used to develop controllers for control of
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Figure 1.6: Feedback PI controller implemented by Arora et al. for real
time control of RCCI engine [53]

CA50 and IMEP in an RCCI engine. Robust controllers including LQI and MPC

controllers were implemented and experimentally validated by Akshat et al. [1, 4].

This work included the development of a sensitivity-based controller to use either

the SOI or PR to control the CA50 of the engine. The authors have also worked

on limiting Coefficient of Variance of IMEP(COV imep) of one cylinder [57]. This is

achieved by using engine maps for feed-forward values to find the optimal CA50 and

PR to maintain a COV imep less than 5%.

A multi zone chemical kinetics based detailed model was developed for predicting

the combustion characteristics of an NG-Diesel RCCI engine [51, 58]. This model
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implements a numerical analysis within a cylinder model which is divided into mul-

tiple zones concentrically. Each zone is initialized with its own species spread and

these zones are coupled with heat and mass transfer. A total of 354 reactions in-

volving 65 species are included in the model. The model is capable of predicting the

pressure trace of the combustion as a function of CA degree and NOx emissions per

cycle. This model was then experimentally validated [59] and Indrajuana et al. [51]

then linearized the model about an operating point and used that as a model for a

multivariable feedback controller. The controller was assessed using simulation.

Recently a multi variable feedback controller for NG-Diesel RCCI engine was devel-

oped along with mode switching between RCCI and Conventional Dual Fuel (CDF)

Combustion by Indrajuana et al. [52]. This allows for improving the range of oper-

ation of the RCCI engine without using diesel combustion while meeting emissions

standards. This controller also uses a COM that is a combination of the multi zone

model by Bekdemir et al. discussed earlier and another dual zone model based on

previous work [60, 61] for modeling the combustion in the dual fuel regime.

Even though controllers for RCCI engines have come a long way in terms of CA50

and IMEP control, there is still work to be done to achieve wide range of operation

and safe and reliable performance.
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1.3 Shortcomings of state of the art

Considering that limited amount of literature available on control of RCCI engines,

there are still many areas for consideration of improvement. Some of them are listed

below.

† The controllers implemented only control CA50 and IMEP but not pressure rise

rate while maintaining the COV imep under 5%. The MPRR limits the load of

the RCCI engine. By controlling the MPRR the load limit of the engine can be

extended to reach higher loads. This active control of MPRR in RCCI engines

has not been done before.

† Most models and controllers that have been implemented work around an op-

erating point and the others that work over a range of operating points have

done that using scheduling [51, 57, 58]. This involves the tedious task of tuning

the controller for different operating points and cannot be a viable option for

controlling over a large range of operating points.

† Owing to the highly non linear nature of RCCI dynamics, even the most ro-

bust controllers are not capable of operating over a large range of operating

conditions.

† More robust and comprehensive models are required to predict the behavior
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of the RCCI engine over a wide range of operating points. In addition, this

restricts the models from capturing the dynamics of the system between the

linearized points or in transients.

† Stability of the controller is only given around the operating points about which

the controller is tuned but not globally by design.

1.4 Objectives of this Thesis

The main objectives of this thesis are:

1. Develop a controller that can control CA50 and IMEP over a large operating

range

2. Control CA50 and IMEP while limiting the MPRR to a pre-determined limit.

The first objective of control over a large operating range is accomplished by develop-

ing a Linear Parameter Varying (LPV) system. The second objective of controlling

CA50 and IMEP while limiting MPRR is accomplished by modeling the MPRR dur-

ing RCCI combustion, developing a Model Predictive Controller (MPC) using MPRR

as a state and limiting the state of MPRR during the optimization of MPC.
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1.5 Structure of this Thesis

In this thesis, a new model is developed for predicting the MPRR during RCCI

combustion. The model is then validated with experimental data and then included

into the existing Mean Value Model (MVM) for predicting MPRR cycle by cycle.

This MVM is then used to develop an Linear Parameter Varying (LPV) system that is

accurate over a large range of operating conditions. The MVM is then used to develop

an MPC using the LPV system developed. The MPC is used to control the CA50

and IMEP while limiting the MPRR to a pre-determined value. The organization of

the thesis is shown in Fig. 1.7
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Figure 1.7: Thesis organization
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Chapter 2

Experimental setup and Analysis

This chapter describes the experimental setup and analysis used to conduct the exper-

iments. The following sections will describe the engine specifications, Modifications

made for RCCI operation, Data acquisition setup, Test procedure and the uncertainty

analysis.

2.1 Engine specifications

The Energy and Mechatronics Laboratory (EML) uses 2.0L GM Ecotec engine at the

Advanced Propulsion Systems (APS) Research Center for studying RCCI combustion.

The engine has been used for Homogenous Charge Compression Ignition (HCCI)
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and Partially Premixed Charge Compression Ignition (PPCI) research during earlier

studies [2]. Though the engine is capable of turbocharging, no boost was used for

the experiments presented in the data here. All the experiments were conducted at

NA conditions. The intake and exhaust valves were set for a Negative Valve Overlap

(NVO). The engine specifications are shown in Table 2.1

Table 2.1
Engine Specifications

Make General Motors
Model Ecotec 2.0 L Turbocharged
Engine Type 4 stroke, Gasoline
Fuel System Direct Injection
No of Cylinders 4 cylinders
Displaced Volume 1998 [cc]
Bore 86 [mm]
Stroke 86 [mm]
Compression Ratio 9.2:1
Max Engine Power 164 @ 5300 [KW@rpm]
Max engine torque 353 @ 2400 [Nm@rpm]
Firing order 1-3-4-2
IVO 25.5/-24.5 [◦CAD bTDC]
IVC 2/-48 [◦CAD bBDC]
EVO 36/-14 [◦CAD bBDC]
EVC 22/-28 [◦CAD bTDC]
Valve lift 10.3 [mm]

2.2 Modifications made for RCCI operation

The stock engine works on Gasoline Direct Injection (GDI) and was designed to inject

only one fuel. This has been modified by the addition of two PFI rails to enable dual
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fuel operation. The two PFI rails added were used primarily for in-cylinder fuel

blending during HCCI operation. In this work only one of the PFI rails was used

for delivery of the low reactivity fuel. The PFI injectors and DI injectors have been

calibrated during previous studies for the fuels used in this work [2, 3]. Two air

heaters have been added upstream of the PFI injectors to control the temperature of

the intake air. The schematic for the engine is shown in Figure 2.1

Figure 2.1: LTC Engine setup [4]

The two fuels used in this work are n-heptane and iso-octane as the low reactivity

fuel and high reactivity fuel respectively. The specifications of these fuels are shown

in Table 2.2
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Figure 2.2: Experimental setup

Property n-heptane iso-octane
Higher Heating Value [MJ/Kg] 48.07 47.77
Lower Heating Value [MJ/kg] 44.56 44.30
Density [Kg/m3] 686.6 693.8
Octane Number [-] 0 100
H/C ratio [-] 2.29 2.25

Table 2.2
Fuel Specifications

2.3 Data Acquisition

The engine requires a group of sensors for collecting and processing the parameters

of operation of the engine and the combustion inside the combustion chamber. This

is achieved by a combination of three systems including NI LabView, dSPACE

and ACAP Combustionn analyzer. The NI LabView system is responsible for

controlling the dynamometer and the temperature of the intake air. It also collects

temperatures at various points on the engine such as oil, coolant, exhaust etc.,

which are used for monitoring purposes. The ACAP Combustion Analyzer is used
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to collect and process the pressure traces collected from the engine cylinders. This

engine is equipped with piezo electric pressure transducers (115A04 transducer from

PCB Piezotronics) inside each cylinder to collect the pressure trace from each of

the cylinders. The methodology used for processing the pressure trace has been

presented by N. Kondipati [3]. The third system used is the dSPACE system

which is primarily used for controlling the actuators such as injectors, spark plugs,

EGR valve etc. A Field Programmable Gate Array (FPGA) has been used to

perform the calculations presented in [3]. These calculations are then fed to the

dSPACE MABX which has a slave controller, RapidPro communicating via CAN.

RapidPro is capable of controlling various actuators such as the PFI, DI, spark plugs,

throttle body etc. The MABX and the RapidPro in conjunction control the engine

on a cycle to cycle based on the real time combustion parameters such as CA50

and IMEP calculated by the FPGA. The engine is equipped with a crank sensor

(Encoder Products - Model 260) with a resolution of 1 Crank Angle Degree (CAD).

This crank sensor was used to calculate the current crank position and the RPM.

An overview schematic of the data acquisition and control setup is shown in Figure 2.3
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Figure 2.3: Data acquisition setup

2.4 Test Procedure

Multiple test runs were conducted to collect data about RCCI combustion to help

developing the Mean Value model (MVM) to be discussed in Chapter 3. The data

for these tests was collected using ACAP data acquisition software. There are three

main parameters that were varied between the test runs, SOI, Fuel Quantity and

Premixed Ratio (PR). PR is the ratio of the energy of the low reactivity fuel to that

of the energy of the total fuel. In this case the low reactivity fuel is iso-octane. The

PR is calculated using the Eq (2.1):

PR =
LHViso ∗mfiso

LHViso ∗mfiso + LHVnhep ∗mfnhep
(2.1)
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where, LHViso and LHVnhep are the Lower Heating Values of the iso-octane and n-

heptane respectively, mfiso and mfnhep are the mass of fuel of iso-octane and nheptane

respectively.

The high reactivity fuel, n-heptane is injected via the DI rail while the low reactivity

fuel, iso-octane is injected via one of the PFI rails. The compression ratio of the

engine was low for cold starting the RCCI engine and hence SI mode was first used

to bring the engine up to temperature.

Once at temperature, the engine was switched to RCCI operation using the dSPACE

MBAX controller. In RCCI mode, the amount of n-heptane and iso-octane was

regulated via PR. For the purpose of parameterizing and validating the MVM, the

engine was run in steady state and transient conditions. The data collected under

steady state operation was used to parameterize the MVM. Each test was run for 100

cycles. Any data points with over 5% COVIMEP were not considered. The intake

temperature was fixed at 60◦ C. The total Fuel Quantity (FQ) was swept at every

SOI and PR step. The operating points collected for the tests are shown in Table 2.3.
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Table 2.3
RCCI Test Conditions

SOI [◦ CAD bTDC] PR [-] FQ [mg/cycle]

60
10 17 - 21
20 17 - 21
30 19 - 23

50
10 17 - 23
20 17 - 23
30 19 - 25

45
30 19 - 25
35 19 - 23
60 19 - 28

40
10 17 - 23
20 17 - 23
40 14 - 28

35
20 10 - 28
60 19.8 - 29

30
40 13 - 28
60 18 - 28

25
20 9 - 27
40 11- 27

20 20 10 - 26

2.5 Uncertainity Analysis for Measured and De-

rived Parameters

The apparatus used for measuring various parameters are limited in accuracy. This

leads to the propagation of those inaccuracies into the derived parameters that are

calculated. Hence, it is important to measure the uncertainity in each of these param-

eters before making conclusions based on them. The uncertainity in the measured
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parameters is presented in Table 2.4.

Table 2.4
Measured parameters and their uncertainities

Parameter [Units] Value Uncertainity (±)
Bore [m] 0.086 0.001

Stroke [m] 0.086 0.001
Length [m] 0.086 0.001

Cylinder Pressure [KPa] 95 - 4000 1%
Crank Angle [CAD] 0 - 720 1

λ[-] 1.0 - 3.0 0.05
Tin 4 - 100 2%

N [rpm] 800 - 2200 10
mair [g/s] 12.1 - 31.0 0.72%

mfuel [mg/cycle] 11.0 - 40.0 0.1%
Pin [KPa] 95 - 105 0.5%

Texhaust [circC] 350 - 700 2%

The derived parameters uncertainities are calculated using Eq (2.2).

Uy =

√√√√∑
i

(
∂Y

∂Xi

)2

U2
Xi

(2.2)

Y is the derived parameter while X is the measured parameter. Uy is the uncertainity

in the derived parameter while Ux is the uncertainity in the measured parameter.

The uncertainities of the derived parameters are shown in Table 2.5
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Table 2.5
Derived parameters and their uncertainities

Parameter [Units] Value ± Uncertainity
BD [◦CAD] 6 ± 1
CA50 [◦CAD aTDC] -1 ± 1
IMEP [KPa] 540.7 ± 28.1

2.6 Maximum Pressure Rise Rate calculation

For modeling the Maximum Pressure Rise Rate (MPRR), it is important to have

experimental data to validate it against. This experimental data comes from the

pressure trace that was collecting using the pressure transducers on the engine as

mentioned in section (2.3). The pressure transducers are capable of measuring in

the range of 0-3500 PSI and have a sensitivity of 1.442 pC/PSI. The electric charge

from the piezo electric modules are amplified to a proportional voltage signal using

a charge amplifier. However, the pressure transducers measure the relative pressure

and hence need a reference. This process of giving the reference pressure to the

pressure transducer is called pegging. In this case, the manifold pressure is the best

reference for the transducer. Hence, it is pegged with the MAP signal. So when the

pressure transducer measures a certain value it subtracts the value of the MAP signal

to give an absolute measurement. This pressure signal is taken at an interval with the

crank angle. This interval of crank angle determines the accuracy of the combustion

parameters that are to be calculated from this pressure trace. In this setup, the signal
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is taken at every 1 CAD.

However, the pressure trace that is collected from the pressure transducer is not

entirely usable. It is important to get rid of any noise that comes with the signal

[62]. For this purpose, it is important to filter the signal and average it over multiple

cycles to remove any noise. Based on the previous work done on the same setup [3],

a Butterworth low pass filter with a cutoff frequency of 0.5 and order 1 was deemed

appropriate.

Once the pressure trace was conditioned and filtered, the MPRR has to be calculated.

At each data point (combination of SOI, FQ and PR), 100 cycles of combustion were

recorded. The pressure rise rate was calculated using the following equation.

(
dP

dθ

)
i

=
Pi+1 − Pi

∆θ
(2.3)

∆θ in Eq. (2.3) is 1 CAD as the pressure trace is collected with an interval of 1 CAD.

2.7 Coefficient Of Variance of IMEP

In order to analyze the various combustion parameters, it is important to understand

if the combustion was stable or not. A common metric for understanding combustion
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stability is the COVIMEP [63]. It quantifies the variation in the IMEP. For this study

any experimental data with COVIMEP greater than 5% is considered unstable and

was not used for analysis.

To calculate the COVIMEP , the IMEP should be calculated first. In this study, the

IMEP is calculated using the gross work per cycle (Wc,ig) where c indicates that the

work done is per cycle. The gross work per cycle includes the work delivered to the

piston over the compression and expansion strokes and excludes the pumping losses

[64]. The equation shown in Eq. (2.4) is used to calculate the IMEP per cycle.

IMEPc =
Wc,ig

Vd
(2.4)

Vd in the Eq. (2.4) is the dispalced volume. The IMEP is averaged over n cycles to

calculate the mean value as shown in Eq. (2.5).

IMEP =

∑n
c=1 IMEPc

n
(2.5)

where, n in this study is 100. The COVIMEP is then calculated using the Eq. (2.6)

where σIMEP is the standard deviation of IMEP over the n cycles.
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COVIMEP =
σIMEP

IMEP
(2.6)

2.8 Experimental data analysis

The Fig. 2.4 shows how MPRR varies with the input parameters, SOI, FQ and PR.

The vertical range at each data point represents the range of MPRR over 100 cycles at

that operating point. It can be seen that with early injections such as 60 CAD bTDC

(Fig. 2.4(c)) and 50 CAD bTDC (Fig. 2.4(b)), MPRR has a near linear relationship

with FQ. Also, there is not much variation between the different PR values considering

the cyclic variability. However, with later injection, 40 CAD bTDC (Fig. 2.4(a)) the

MPRR vs FQ relationship is no longer linear. The relationship between MPRR and

FQ also changes with PR.

This suggests that there are different regimes of combustion. With earlier injections,

the DI fuel gets time to mix well and form a homogeneous mixture with the PFI fuel

and air. This leads to very rapid combustion with a short burn duration. The MPRR

for a given PR value keeps increasing as the SOI advances. This further supports the

argument that with advanced SOI, the in-cylinder mixture is more homogeneous and

thus leads to high MPRR.

As the SOI is retarded, the mixture is not homogeneous anymore but is stratified.
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Figure 2.4: Variations of MPRR as a function of SOI, FQ and PR. (a) N
= 1000, Tin = 60◦, SOI = 40 CAD bTDC, (b) N = 1000, Tin = 60◦, SOI =
50 CAD bTDC,(c) N = 1000, Tin = 60◦, SOI = 60 CAD bTDC
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The DI fuel does not get enough time to mix with air and the PFI fuel. This leads to

local high equivalence ratios and a longer burn duration. The combustion in this case

is not as short and rapid as when there is a homogeneous mixture. In addition, due

to stratification of the in-cylinder mixture, PR and FQ become dominant parameters

because they affect the nature and amount of stratification within the cylinder. Hence,

as the SOI retards, MPRR is affected strongly by PR and FQ.

The Fig. 2.5 represents the variation in MPRR with respect to the input parameters.

It can be noted that the standard deviation of MPRR increases with earlier injection

of the DI fuel, higher PR and with higher quantity of fuel.

With higher PR, the amount of low reactivity fuel increases in the mixture leading

to relatively unstable combustion. It can be seen in Fig. 2.5(b) that for data points

with high PR, the COVimep is also higher. This instability in combustion leads to

higher variation in the MPRR.

33



Figure 2.5: Standard deviation of MPRR for 87 data points as shown in
Table 2.3. SOI: 20 - 60 (CAD bTDC); PR: 10 - 60 (-); FQ: 9 - 29 (mg/cycle).
Standard deviation is calculated over 100 cycles for each data point.
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Chapter 3

Dynamic model for RCCI

combustion

3.1 Introduction

A computationally efficient and reliable plant model is required for real time model

based control of combustion phasing and load. This plant model should be able to

calculate various parameters that are of interest and the intermediate parameters

accurately to be able to use for feedback control. Many plant models have been

developed in the past for engines. Two common types of models include CFD [65,

66, 67] and Control Oriented Models (COM)[1, 58]. CFD plant models can be very

35



accurate, however, they are also very computationally expensive. Hence, they cannot

be used as plant models for real time feedback controls. However, COMs as the name

suggests are Control Oriented and hence are computationally light. They are not as

extensive as the CFD models but can be developed to be accurate enough for the

parameters of interest. In this work, the aim is to develop a model for predicting the

MPRR on a cycle by cycle basis in order to be used as a COM for controlling CA50

and IMEP while limiting the MPRR.

A popular approach to model MPRR is to reconstruct the pressure trace which then

allows for calculating the pressure rise rate [68, 69, 70]. In order to reconstruct the

pressure trace, Wiebe function is widely used to model the MFB and the Woschni

model is used for the heat transfer to the walls [68, 69, 71, 72, 73]. However, the mod-

ified Woschni model developed by Chang et. al [74] has been used in LTC combustion

regimes.

This work expands on the methods used for pressure trace reconstruction in tradi-

tional ICE and apply it to RCCI combustion. It uses a Wiebe function along with

the modified Woschni correlation to develop a MVM to predict the MPRR in steady

state conditions. This MVM is then included with physics based equations to include

the transient dynamics. This chapter also includes the models used for predicting

SOC, CA50 and IMEP while accounting for the transients of residual gas fractions.

This model is then linearized and developed into an LPV system using a machine
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learning technique [6]. The following sections explain the development of the MPRR

model and the rest of physics based dynamic model and the LPV development.

3.2 SOC model

The Start of Combustion (SOC) is predicted using a Modified version of the Knock

Integral Model (KIM) developed by Livengood et al. [54] for detecting knock in SI

engines. It was modified by Shahbakhti and Koch [56] to predict the SOC in HCCI

engines. Later, Sadabadi [1] had modified it to work with RCCI combustion. The

initial idea with KIM was that the ignition would happen when the significant species

reached a certain critical value. Since, this was initially developed by Livengood for

SI engines where the fuel is injected along with the air, there was only 1 stage of

integration. However, in an RCCI setup, the Modified Knock Integral Model (MKIM)

requires two stages as the DI fuel, n-heptane, is injected after Intake valve Closing

(IVC). The MKIM is shown in Eq. (3.1). The first stage is from the IVC to SOI

which represents the compression of the PFI fuel, iso-Octane, and the second stage

represents the compression of the mixture of both the high reactivity (n-heptane) and

the low reactivity (iso-Octane) fuels.
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∫ SOC

SOI

dθ

A2N
(
φB2DI
DI + φB2PFI

PFI

)
exp

(
C2

CNmix+b
(Pivcv

nc
c )D2

Tivcv
nc−1
c

)+

∫ SOI

IV C

dθ

A1NφBPFIexp
(
C1(Pivcv

nc
c )D1

Tivcv
nc−1
c

) = 1

(3.1)

where, N is engine speed, φdi and φpfi are the equivalence ratios of the DI and PFI

injected fuels which are calculated using Eq. (3.2) and Eq. (3.3) where φtot is the

global combined equivalence ratio. CNmix is the Cetane Number of the mixture which

is represented with the Eq. (3.4) where FARst is the stoichiometric fuel-air ratio of

the respective fuel and CN is the cetane number of the respective fuel. nc is the

polytropic coefficient which is calculated using the slope of the compression stroke

on the PV diagram. vc is the ratio of the volume at IVC to volume at any given

crank angle θ as shown in the Eq. (3.5). The PIV C and TIV C are the pressure and

temperature at IVC. Since the IVC happens 2 CAD before BDC, the conditions at

IVC are considered to be equal to that of the manifold.

φdi = (1− PR).φtot (3.2)

φpfi = PR.φtot (3.3)

CNmix =
FARst,nhepφdiCNnhep + FARst,isoφPFICNiso

FARst,nhepφDI + FARst,isoφPFI
(3.4)
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vc =
VIV C
V (θ)

(3.5)

The constants in Eq. (3.1) are A1, A2, B,B2DI , B2PFI , b, C1, C2, D1 and D2 which are

to be parametrized. The optimized parameters used in this work are given in Table

3.1

A1 B C1 D1 A2

0.5366 -0.0072 5.2104 -0.0002 0.0024
B2DI B2PFI C2 b D2

0.0016 7.3403e-05 1512.17e+03 174.24 -0.2374

Table 3.1
Optimized parameters for MKIM

3.3 Maximum Pressure Rise Rate modeling

3.3.1 Introduction

For the safe operation of an engine operation, it is important to keep the MPRR under

safe limit of the engine. High MPRR can lead to physical damage to the engine.

Especially, in RCCI combustion where the burn duration can be short, leading to

sharp rises in the pressure. Hence, it is important to model and control the MPRR in

order to safely operate the engine while reaching the desired CA50 and IMEP targets.
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dQ

dθ
=

γ

γ − 1
.P
dV

dθ
+

1

γ − 1
V
dP

dθ
+
dQw

dθ
(3.6)

where dQ
dθ

is the rate of heat release, γ is the adiabatic coefficient of compression,

P is the instantaneous pressure, V is the instantaneous volume and dQw
dθ

is the heat

transfer to the wall.

Pressure rise rate has been modeled in the past using the heat release equation as

shown in Eq. (3.6) [68, 69, 70]. This equation can be re arranged to calculate the

pressure rise rate as shown in Eq.( 3.7):

dP

dθ
=
γ − 1

V

(
dQ

dθ
− dQw

dθ

)
− γP

V
.
dV

dθ
(3.7)

The first term on the right hand side of Eq. (3.7) represents the heat release from the

fuel. This term is modelled using the Wiebe function. The Wiebe function models

the rate of burn of the fuel. The Wiebe function combined with the LHV of the fuels

is used to calculate the heat release form the fuel as shown in Eq. (3.8).

dQ

dθ
= LHVeff

m

α∆θ

(
θ − θsoc

∆θ

)(m−1)

exp

[
−
(
θ − θsoc
α∆θ

)m]
(3.8)

where LHVeff is the effective Lower Heating Value, m is the shape factor, ∆θ is the
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burn duration, α is the scaling factor, θsoc is the crank angle at SOC and θ is the

instantaneous crank angle. The LHVeff is calculated using Eq. (3.9).

LHVeff = (1− PR).LHVDI + PR.LHVPFI (3.9)

where LHVDI is the Lower Heating Value of the DI injected fuel, in this case, n-

heptane and LHVPFI is the Lower Heating Value of the PFI injected fuel, in this case

Iso-Octane.

The second term on the right hand side in Eq. (3.7) represents the heat loss to the

wall. It is modeled using the modified Woschni Model for LTC engines. It is shown

in Eq. (3.10) [74]:

dQw

dθ
=
hc.Ac.(Tg − Tw)

6.N
(3.10)

where, N is the engine speed, Ac is the in-cylinder surface area, Tg and Tw are the gas

temperature and the wall temperature, respectively. hc is the heat transfer coefficient

which is calculated based on the Eq. (3.11) and Eq. (3.12).

hc(t) = 3.4.H(t)(−0.2).P (t)(0.8).T (t)(−0.73).ω(t)(0.8) (3.11)
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ω(t) = C1.Sp +
C2.Vd.TIV C
6.PIV CVIV C

(P (t)− Pmot(t)) (3.12)

where, H(t) is the instantaneous cylinder height, P(t) is in-cylinder pressure and T(t)

is the in-cylinder gas temperature as a function of time. Sp is the average piston speed

and Pmot is the motoring pressure as a function of time. C1 and C2 are constants.

The third term on the right hand side in Eq. (3.7) comes from the instantaneous

pressure and volume. Volume as a function of the crank angle θ can be represented

using Eq. (3.13)

V (θ) = Vc +
ΠD2

4
.(l + r − r.cosθ −

√
l2 − (r.sinθ)2) (3.13)

where, D is the bore diameter, l is the length of the connecting rod, r is the radius

of the crank and Vc is the clearance volume.

The Eq. (3.7) is computed at every crak angle from SOC to EOC. The SOC is calcu-

lated using the MKIM adapted for RCCI combustion [1]. At SOC, the instantaneous

P and V values are initialized to Psoc and Vsoc. MPRR is the maximum value of the

pressure rise rate from SOC to EOC.
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3.3.2 Double Wiebe vs Single Wiebe function

As introduced in Section 3.3.1 a Wiebe function is required to model the heat release

from the fuel. There are two types of Wiebe function, Single and Double Wiebe

functions which are shown in Eq. (3.14) [75] and Eq. (3.15) respectively.

Xb(θ) = 1− exp
[
−
(
θ − θsoc
α∆θ

)m]
(3.14)

Xb(θ) = p ∗ [1−exp
[
−
(
θ − θsoc
α1∆θ1

)m1
]

+ (1− p) ∗
[
1− exp

[
−
(
θ − θsoc
α2∆θ2

)m2
]] (3.15)

where θsoc is the CAD at SOC, ∆θ is the burn duration, α is a scaling factor based

on the extent of burn considered (such as 10% to 90%) and m is a constant that

determines the shape of the mass fraction burn. For a double Wiebe function, p

(0 < p < 1) is a weighing factor between the two terms. Each term has its own

α,∆θ, θsoc and m.

The double Wiebe function is largely favored for pressure reconstruction [68, 71, 72].
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However, as shown in Fig 3.1(b), the MPRR predicted using the a double Wiebe

function which is highly inaccurate in the later stages of the MFB is not different from

the MPRR predicted with an accurate double Wiebe function. This is largely because

the MPRR occurs somewhere between the SOC and the point of peak pressure. The

pressure trace after that is only decreasing. Hence, a single Wiebe function which is

accurate in the region from SOC to peak pressure would be sufficient for the purpose

of predicting the MPRR.

(a) Accurate double Wiebe function (b) Inaccurate double Wiebe function

Figure 3.1: Effect of double Wiebe function accuracy on MPRR prediction,
FQ = 17 mg/cycle, SOI = 40 bTDC, PR = 20

3.3.3 Parametrization of Single Wiebe function

To parametrize and validate the Wiebe function, 80 data points were used. 65% of

these points, i.e. 52 data points were used to parametrize the Wiebe function while

the rest 35%, i.e. 28 data points were used to validate the Wiebe function. The

operating conditions are shown in Table 3.2.
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Table 3.2
Operating conditions for parametrization and validation of the Wiebe

function

Parameter [Units] Operating point
PR [-] 10-20-30-40-50-60

SOI [◦CAD bTDC] 10-15-20-30-40-50-60
Tin [circC] 60

Λ [-] 2.5-10
Pin [KPa] 96.5

IVO [circCAD bTDC] 25.5
EVC [circCAD bTDC] 22

Speed [RPM] 1000

A Wiebe function as shown in Eq. (3.14) has three parameters that need to be

parameterized, θsoc,∆θ and m. θsoc is predicted using the MKIM which is described

in Section 3.2. ∆θ and m are parameterized as shown in Eq. (3.16) and Eq. (3.17).

∆θ = C1 +K(C2.φdi + C3.φpfi + C4.SOI + C5) + C4.SOI (3.16)

m = C ′1 + C ′2.(1 +K).SOI + C ′3.K (3.17)

K = exp[−(SOI − C6)C7 ] (3.18)

where C1, C2, C3, C4, C5, C6, C7, C
′
1, C

′
2 and C ′3 are constants that are parametrized.

The parametrized values are shown in Table 3.3.

The results of the 52 data points is shown in Fig. 3.2. The vertical range at each

experimental data point represents the range of MPRR over 100 cycles. The mean of

45



Table 3.3
Optimized parameters for MPRR model

C1 C2 C3 C4 C5 C6 C7 C ′1 C ′2 C ′3
29.00 -29.07 -15.75 -0.40 -1.77 60.00 2.00 1.298 -0.0012 0.202

Figure 3.2: Data points used for parametrizing the model N = 1000 RPM,
Tin = 60◦ C

Figure 3.3: Experimental validation of the MPRR model at N = 1000
RPM, Tin = 60◦ C

the 100 cycles is represented by the blue cross. The mean error between the predicted

and the experimental values is 0.7 bar/CAD. The validation results are shown in Fig.
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Figure 3.4: Transient validation of the MPRR model at N = 1000 RPM,
Tin = 60◦ C, SOI = 40 CAD bTDC and FQ = 22 mg/cycle

3.3. These results confirm that the model is able to predict the MPRR with a mean

error of 0.6 bar/CAD for steady-state conditions. The following sections will discuss

the performance of the MPRR model for transient conditions.

3.3.4 PR Transient

The Fig. 3.4 shows the performance of the MPRR model when a step change in PR

occurs. We can see that when the PR increases from 20 to 60 the MPRR reduces.

The model is able to predict this change in the MPRR with an average error of 0.62

bar/CAD.
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Figure 3.5: Transient validation of the MPRR model at N = 1000 RPM,
Tin = 60◦ C, PR = 40 and FQ = 21 mg/cycle

3.3.5 SOI Transient

The Fig. 3.5 shows the performance of the MPRR model when a step change in SOI

occurs. We can see that as the SOI is advanced from 30 CAD bTDC to 50 CAD

bTDC, the MPRR increases. The model is able to predict this change in MPRR with

an accuracy of 1.5 bar/CAD.

3.3.6 Statistical Analysis

In order to understand if the mean error of the model is acceptable, a statistical anal-

ysis was done on the experimental data. The aim of this analysis was to understand

the range of MPRR within which most of the experimental data would fit. For this
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purpose, the distribution of the MPRR of each data point’s 100 cycles was plotted.

The distribution plots of the data points with maximum, minimum and average vari-

ation across 100 cycles are shown in Fig. 3.6. The data was assumed to be a normal

distribution. In a normal distribution, 2σ would cover 68% of the data [76]. Hence,

σ was considered as the acceptable mean error.

(a) Least variation (b) Average variation

(c) Maximum variation

Figure 3.6: Statistical Analysis for three different operating conditions.
(a) N = 1000, Tin = 60◦, FQ = 19 mg/cycle, SOI = 40 bTDC, PR = 20 ,(b)
N = 1000, Tin = 60◦, FQ = 19 mg/cycle, SOI = 35 bTDC, PR = 20,(c) N
= 1000, Tin = 60◦, FQ = 22 mg/cycle, SOI = 45 bTDC, PR = 60

As can be seen from the distribution plots in Fig. 3.6(a), σ for a data point with

average variation is 0.6 bar/CAD. Thus, the MPRR model prediction error was within

the MPRR cyclic variability limits of the RCCI engine studied. To this end, the

MPRR model was able to predict the MPRR with similar or better accuracy for the
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steady state and PR transient conditions. For SOI transient step the accuracy was

still within 2σ of the data point with maximum variation and little over the 2σ of the

data point with average variation. Given the MPRR model was able to largely predict

with an accuracy of 0.7 bar/CAD or better, it was considered to be an accurate model

for RCCI control applications.

3.4 CA50 model

Combustion phasing is one of the key parameters that characterize the combustion

inside a cylinder. It is important to control the CA50 which is the Crank Angle at

50% Mass Fraction Burn (MFB) in order to achieve efficient combustion. For this

purpose a Wiebe function is developed by Sadabadi [1]. The Wiebe function used is

shown in Eq. (3.19):

Xb(θ) = 1− exp

(
−A

[
θ − θsoc
θd

]B)
(3.19)

where, θsoc is the SOC predicted by the MKIM discussed in Section 3.2 and θd is the

burn duration that is estimated using the following equation:
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θd = C(1 +Xd)
D.(φEDI + φFPFI) (3.20)

where, Xd is the dilution fraction that includes the affect of EGR and residual gases.

φDI and φPFI are the equivalence ratios as presented in Eq. (3.2) and (3.3). The

constants A,B,C,D,E and F need to be parametrized. The optimized parameters

are presented in Table 3.4.

A B C D E F
0.1073 14.952 6.5361 0.03813 -0.1726 0.1064

Table 3.4
Optimized parameters for CA50 model

3.5 IMEP Model

IMEP is one of the major parameters of interest in engine control. It is linked to the

engine load which should be controlled in engine applications. In order to control the

IMEP a model needs to be developed that is able to predict the IMEP of the engine.

IMEP is calculated using Eq. (3.21). It is the cyclic integral of in-cylinder pressure

times the volume.

IMEP =
1

Vdis

∮
V

PdV (3.21)

51



However, since the accurate prediction of P at every crank angle during combus-

tion is computationally intensive, Bidarvatan [77] suggested the use of temperature

variations to calculate the IMEP as shown in Eq. (3.22)

IMEPK+1 = mt,K+1
cv
Vdis

(Tivc,K+1 − Tsoc,K+1 + Teoc,K+1 − Tevc,K+1) (3.22)

This work uses the same method as shown above to predict the IMEP which was

validated in prior work on the same engine setup [4].

3.6 Cycle by Cycle dynamic model

In order to be able to control the RCCI engine effectively during transients, it is

important to model the transient behaviour within the combustion chamber. Each

combustion cycle has an effect on the next combustion cycle. This phenomenon has

to be taken into account along with the effects of the mixing of residual gases trapped

at the end of each cycle, with the fresh charge of it’s successive cycle. For this purpose

a cycle by cycle dynamic model is developed to represent the behaviour from IVO to

EVC.
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3.6.1 Intake stroke (IV O → IV C)

During this phase, the dynamic model is initialized with the initial conditions for

PR, Tin, SOI, φtot and Pexh. These initial values are set parameters either manually

or by the controller. As discussed in the previous Section 3.2, the Pivc and Tivc are

assumed to be equal to that of the manifold P and T as the IVC is 2 CAD bBDC.

However, the residual gases that were trapped from the previous cycle will have an

effect on the temperature of the intake charge. This in turn affects the SOC and

CA50. The mixture temperature at IVC is calculated using the Eq. (3.23):

Tivc,k+1 = (1−Xrg)Tin,k+1 +XrgTrg,k (3.23)

where, Tivc,k+1 is the temperature of the charge at IVC in current cycle, Xrg is the

residual gas mass fraction and Trg,k is the temperature of the residual gas in the

previous cycle. However, for the first cycle the parameter Trg needs to be initialized.

For this, the model developed by Cavina [78] is used in this work. It is represented

in Eq. (3.24)
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Xrg =

√
1

C
· π.
√

2

360
· rc − 1

rc
· OF
N

√
R.Tin|Pexh − Pin|

Pexh
·
(
Pexh
Pin

) γ+1
2γ

+

1

C
· rc − 1

rc
φtot

Vivo
Vdis
·
(
Pexh
Pin

) 1
γ

(3.24)

where, Tin and Pin are the intake temperature and pressure respectively, rc is the

compression ratio, OF is the overlap of intake and exhaust valves, Pexh is the exhaust

pressure, R is the gas constant, γ is the ratio of specific heats and Vivo and Vdis are the

volume at IVO and displaced volume respectively. C is calculated using the following

equation:

C =

1 +
LHV

cvTin

(
mtot
mf

)
· rγ−1

c

 1
γ

(3.25)

where, LHV is the lower heating value of the mixture calculated using the Eq. (3.26)

and cv is the specific heat capacity at constant volume calculated at IVC conditions.

LHV =
PR

100
.LHViso +

(
1− PR

100

)
.LHVnhep (3.26)

Once the Xrg is calculated using the Eq. (3.24) for the first cycle, durng the consecu-

tive cycle the Xrg is calculated using the Eq. (3.27). This is done in an iterative loop
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until Xrg converges to a terminal value. Trg is also recalculated by using the same

method until it converges to a terminal value.

Xrg =
mrg

mtot

(3.27)

Where mtot is the total mass of the charge at IVC and mrg is the mass of the residual

gas which is calculated using the Eq. (3.44) explained in Section 3.6.5.

3.6.2 Polytropic Compression IV C → SOC

The Psoc and Tsoc are calculated using the Eq. (3.28) and (3.29) assuming the com-

pression is polytropic [79].

Tsoc,k+1 = Tivc,k+1

(
Vivc

Vsoc,k+1

)nc−1

(3.28)

Psoc,k+1 = Pivc,k+1

(
Vivc

Vsoc,k+1

)nc
(3.29)

However, to use Eq. (3.28) and (3.29), the SOC has to be calculated using the MKIM

developed in Section 3.2. nc is the polytropic coefficient calculated from experimental

data and Vivc and Vsoc are the volumes at IVC and SOC, respectively.
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3.6.3 Combustion (SOC → EOC)

MPRR and CA50 are predicted during the combustion phase with the models pre-

sented in the previous sections 3.3.3 and 3.4. EOC and BD are estimated using the

following models.

3.6.3.1 BD Model for EOC estimation

The primary mechanism of combustion in RCCI is the spontaneous ignition front

as the flame propagation cannot be sustained [66]. A correlation was developed by

Sadabadi between the Burn Duration (BD) and the spontaneous ignition front speed

(Sig) [1] as shown in Eq. (3.30):

BD = K2(Sig)
t (3.30)

where, K2 and t are parameters that need to be estimated. Since, the high reactivity

fuel and the low reactivity fuel create stratified layers and pockets of rich and high

reactive fuel, the ignition delay is not constant throughout the combustion chamber.

Hence, Sadabadi proposed the use of Eq. (3.31) to calculate the ignition front speed.
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Sig =
1

| dτ
dφDI
||∇φDI |

(3.31)

where, τ , the ignition delay is calculated using the denominator of the MKIM equation

presented in Eq. (3.1) from SOI to SOC. The equivalence ratio gradient is calculated

using the following Eq. (3.32):

|∇φDI | =
K1

IDp
.φrDI (3.32)

ID = SOI − SOC (3.33)

where, ID is the Ignition Delay and p, r and k1 are parameters that are estimated.

EOC is then estimated using the BD that was just calculated.

EOC = SOC +BD (3.34)

The rise in temperature during combustion is given by Eq. (3.35):

∆T =
LHVDIFARst,nhep.φDI + LHVPFIFARst,iso.φPFI

cv(FARst,nhep.φDI + FARst,iso.φPFI + 1)
(3.35)
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K1 t K2 a0 a1 a2

4.254 -0.3347 32.6389 0.2152 -1.2389e-05 4.1071e-07
b0 b1 b2 p r

12.42655 0.001407 -3.3397e-05 2.2201e-05 0.53812

Table 3.5
Optimized parameters for the BD model

The temperature at EOC (Teoc,k+1) and pressure at EOC (Peoc) are calculated using

the Eq. (3.36) and 3.37

Teoc,k+1 = Tsoc,k+1 + e1.∆T (3.36)

Peoc,k+1 = Psoc,k+1 + e2.∆T (3.37)

where, e1 and e2 are parameters that account for the heat loss and can be assumed to

be a polynomial of 2nd degree [80] which are calculated using Eq. (3.38) and (3.39)

e1 = a0 + a1θsoc + a2θ
2
soc (3.38)

e2 = b0 + b1θsoc + b2θ
2
soc (3.39)

where, a0, a1, a2, b0, b1 and b2 are constants that are required to be estimated. The

optimized parameters are shown in Table 3.5
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3.6.4 Polytropic Expansion (EOC → EV O)

The expansion phase from EOC to EVO can be approximated as a polytropic process

[79]. The pressure at EVO (Pevo) and temperature at EVO (Tevo) can be calculated

using the following equations:

Tevo,k+1 = Teoc,k+1

(
Veoc,k+1

Vevo

)ne−1

(3.40)

Pevo,k+1 = Peoc,k+1

(
Veoc,k+1

Vevo

)ne
(3.41)

where, ne is the polytropic coefficient of expansion that is estimated from the exper-

imental data.

3.6.5 Exhaust stroke (EV O → EV C)

The last phase, exhaust stroke, is approximated to a polytropic process [79]. The

temperature at EVC (Tevc,k+1) can be estimated using the following equation:

Tevc,k+1 = Tevo,k+1

(
Pexh,k+1

Pevo,k+1

)ne−1
ne

(3.42)
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where, exhaust pressure at current cycle is represented by Pexh,k+1. The temperature

at EVC (Tevc,k+1) is assumed to be equal to that of the residual gas (Trg,k+1). Hence,

the mass of residual gas (mrg,k+1) is estimated using the Eq. (3.43):

mrg,k+1 =
Pexh,k+1.Vevc
Revc.Trg,k+1

(3.43)

where, Revc is the gas constant. Therefore, the residual gas fraction can be calculated

using the Eq. (3.44):

Xrg,k+1 =
mrg,k+1

mtot,k+1

(3.44)

A schematic of the entire RCCI cycle by cycle dynamic model is shown in Fig. 3.7.

This model is capable of running at 36 ms/cycle on an Intel ® Xeon ® processor with

16 GB of RAM
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Figure 3.7: Cycle by cycle RCCI dynamic model schematic
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3.7 Data Driven LPV identification

3.7.1 Introduction

There have been few works in the past that have developed COM for RCCI engines

[1, 4, 51]. However, all of these models are based on first principle physics equations.

They either use CFD or physics based equations to represent the dynamics of the

combustion inside the chamber. These models have been fairly successful. However,

it takes considerable amount of time, effort and money to develop and validate these

models. However, another approach can be employed to develop these COMs with

relative ease and investment and that is the Data Driven Modeling (DDM) approach.

The advantage of this approach is that it does not require a thorough knowledge of the

plant physics and the interactions and the relationships of various parameters in the

plant. This work uses a method in DDM put forward by Rizvi et al. [6] and has been

used for RCCI engines by Khoshbakhat et al. [5]. It uses a Machine Learning (ML)

strategy called Support Vector Machine (SVM) which is used to classify between to

classes of data. This strategy is capable of solving prediction problems [81] and in

this work is extended to identify RCCI combustion metrics.
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For linear control purposes, one approach of controller design is via state space rep-

resentation, which is followed in this thesis. To this end, the RCCI model needs to

be presented in state space form. For this purpose, the model is linearized around an

operating point. But, the state space representation is not accurate over a large range

of operating points. In order to operate over a large range of operating points, multi-

ple state space representations are developed. The controller then switches between

these state space representations based on the operating conditions. This leads to

extensive time and efforts spent in developing these controllers and tuning them. In

order to avoid this, a Linear Parameter Varying (LPV) representation can be used. In

an LPV representation the A, B, C and D matrices of the state space representation

are described as a function of a parameter called scheduling parameter p. A schedul-

ing parameter is a time varying parameter that allows for capturing the dynamic

behavior of the plant. As the scheduling parameter changes, the plant representation

changes adapting to the change in plant’s behaviour. In this work a DDM approach

is used to identify an LPV representation for RCCI combustion metrics.

3.7.2 DDM for LPV identification

This Section describes the SVM based DDM used to develop the state-space LPV

representation for the RCCI engine model. The following equations Eq. (3.45) and

(3.46) show how the LPV system is defined.
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xk+1 = A(pk)xk +B(pk)uk +K(pk)ek (3.45)

yk = C(pk)xk + ek (3.46)

where x, y and u are the states of the plant, measurable outputs of the plant and

the inputs to the plant respectively. p represents the scheduling parameter, e repre-

sents stochastic white noise. Each of these parameters are defined in discrete time

represented by k. The matrices, A(pk), B(pk), C(pk) and K(pk) are the state space

matrices of the plant as a function of the scheduling parameter p. The equations Eq.

(3.45) and Eq. (3.46) can be rewritten as shown in Eq. (3.47) and (3.48):

xk+1 = (A(pk)−K(pk)C(pk))︸ ︷︷ ︸
Ã(pk)

xk +B(pk)uk +K(pk)yk (3.47)

yk = C(pk)xk + ek (3.48)

For LPV identification, the Ã(pk), B(pk) and C(pk) have to be computed using the

measured training data. In this work, SVM strategy is used to compute these matrices

based on measured trainng data [xk, uk, pk, yk]
N
k=1. The matrices, Ã(pk), B(pk), C(pk)

and K(pk) can be represented using Eq. (3.49) to (3.52) based on the SVM strategy.
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Ã(pk) = W1Φ1(pk) (3.49)

B(pk) = W2Φ2(pk) (3.50)

K(pk) = W3Φ3(pk) (3.51)

C(pk) = W4Φ4(pk) (3.52)

where W1,W2,W3 and W4 are support vector weighting matrices and Φ1,Φ2,Φ3 and

Φ4 are feature maps. All of these parameters are unknown and need to be computed.

Now, Eq. (3.47) and 3.48 can be rewritten as shown in Eq. (3.53) and (3.54):

xk+1 = W1Φ1(pk)xk +W2Φ2(pk)uk +W3Φ3(pk)yk (3.53)

yk = W4Φ4(pk)xk (3.54)

In order to optimize the computation of the state-space matrices, a cost function

has to be defined. The cost function should be dependant on the magnitude of

the weighing matrices W1,W2,W3 and W4 and also should account for the error in

estimation for the training data. For this purpose, a Least Squares optimization

method has been chosen. The method used here was proposed by Suykens et. al [82]

and is used to compute the support vector weighing matrices. The cost function is
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shown in Eq. (3.55):

J =
1

2

3∑
i=1

||Wi||2F +
1

2

N∑
k=1

ET
k ΓEk (3.55)

where, Γ is a diagonal matrix of the weighing factors for the error in estimation known

as the regularization matrix and ||.||F is the Frobenius norm. The method of Lagrange

multipliers can be used for minimizing the cost function shown in Eq. (3.55). The

Lagrangian function can be represented using the equation shown in Eq. (3.56):

L(W1,W2,W3,W4, α, β, e) = J −
N∑
j=1

αTj {W1Φ1(pj)xj +W2Φ2(pj)uj+

W3Φ3(pj)yj − xj+1} −
N∑
j=1

βTj {W4Φ4(pj)xj − yj+1}

(3.56)

where, j is discrete time and αj and βj are the Lagrangian multipliers. The global

optimum of the Lagrangian can be found when the derivative is equal to zero, as it

has a convex shape. The derivatives are shown in Eq. (3.57) to (3.63):

∂L
∂αi

= 0⇒ xj+1 = W1Φ1(pj)xj +W2Φ2(pj)uj +W3Φ3(pj)yj (3.57)
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∂L
∂W1

= 0⇒ W1 =
N∑
j=1

αjx
T
j ΦT

1 (pj) (3.58)

∂L
∂W2

= 0⇒ W2 =
N∑
j=1

αju
T
j ΦT

2 (pj) (3.59)

∂L
∂W3

= 0⇒ W3 =
N∑
j=1

αjy
T
j ΦT

3 (pj) (3.60)

∂L
∂W4

= 0⇒ W4 =
N∑
j=1

βjx
T
j ΦT

4 (pj) (3.61)

∂L
∂ej

= 0⇒ βj = Γej (3.62)

∂L
∂βj

= 0⇒ yj = W4Φ4(φj)xj (3.63)

Now, Eq. (3.53) and (3.54) can be rewritten as shown in Eq. (3.64) and (3.65):

xk+1 =
N∑
j=1

αjx
T
j ΦT

1 (pj)︸ ︷︷ ︸
W1

Φ1(pk)xk +
N∑
j=1

αju
T
j ΦT

2 (pj)︸ ︷︷ ︸
W2

Φ2(pk)uk

+
N∑
j=1

αjy
T
j ΦT

3 (pj)︸ ︷︷ ︸
W3

Φ3(pk)yk

(3.64)

yk =
N∑
j=1

βjx
T
j ΦT

4 (pj)︸ ︷︷ ︸
W4

Φ4(pk)xk + Γ−1βk︸ ︷︷ ︸
ek

(3.65)
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The inner product of ΦT
4 (pj)W4Φ4(pk) can be replaced with a kernel matrix as shown

in Eq. (3.66) and (3.67):

[Ω]j,k =
3∑
i=1

zTi (j)k̄i(pj, pk)zi(k) (3.66)

[Ξ]j,k = xTj k̄
4(pj, pk)xk (3.67)

where, z1(k) = xk, z2(k) = uk and z3(k) = yk. In this work, a Gaussian kernel was

used which is defined as shown in Eq. (3.68):

k̄i(pj, pk) = exp(−||pj − pk||
2
2

2σ2
i

) (3.68)

where, σi is the standard deviation for the gaussian function and ||.|| is the l2 norm.

Using the Eq. (3.66) and (3.67), Eq. (3.64) and (3.65) can be rewritten as Eq. (3.69)

and (3.70):

Xk+1 = αΩ (3.69)

Y = βΞ + Γ−1β (3.70)
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where, Xk+1 and Y are the states and the outputs used in the training data. Thus,

α and β can be solved using the following equations:

α = Xk+1Ω−1 (3.71)

vec(β) = (IN
⊗

Γ−1 + ΞT
⊗

Iny)
−1vec(Y ) (3.72)

where,
⊗

represents the Kronecker product and vec(.) represents vectorization func-

tion. Iny and IN are identity matrices. The classical sylvester equation can be used

to solve Eq. (3.72). Once α and β have been computed, Ã(.), B(.), K(.) and C(.) can

be computed using the following Eq. (3.73) to (3.76):

Ã(·) = W1Φ1(·) =
N∑
k=1

αkx
T
k k̄

1(pk, ·) (3.73)

B(·) = W2Φ2(·) =
N∑
k=1

αku
T
k k̄

2(pk, ·) (3.74)

K(·) = W3Φ3(·) =
N∑
k=1

αky
T
k k̄

3(pk, ·) (3.75)

C(·) = W4Φ4(·) =
N∑
k=1

βkx
T
k k̄

3(pk, ·) (3.76)
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3.7.3 LPV model identification and validation

The methodology explained in the previous Section 3.7.2 can be used to develop

a state-space representation for RCCI combustion metrics using experimental data.

This largely reduces the amount of time and effort needed to develop a state space

representation. The experimental data that is used for the LPV identification has

to be collected over the operating range of interest and should capture the dynamic

behaviour of the engine. This allows for the development of a robust LPV model.

However, due to lack of experimental data that captured the dynamics of MPRR,

the data generated by the dynamic model explained in Section 3.6 along with the

models for MPRR, SOC, CA50 and IMEP presented in Sections 3.2, 3.3, 3.4 and 3.5

is used. The RCCI engine model is excited with a combination of inputs (FQ, SOI

and PR) and the output response (CA50, Psoc, Tsoc, IMEP and MPRR) of the model

is recorded. The recorded output of the RCCI engine model is then used to identify

the LPV representation.

The state-space representation for RCCI combustion is shown below in Eq. (3.77) to

(3.80):

X =

[
CA50 MPRR Tsoc Psoc IMEP

]T
(3.77)
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Figure 3.8: Inputs to RCCI dynamic Model N = 1000 RPM, Tin = 60◦ C

U =

[
SOI FQ

]T
(3.78)

p =

[
PR

]
(3.79)

Y =

[
CA50 MPRR IMEP

]T
(3.80)

The RCCI engine model is excited with inputs (FQ, SOI and PR) as shown in Fig.

3.8. The output response of the RCCI engine model is recorded as shown in Fig.

3.9. The combination of the input and output data generated from the RCCI engine

model is used to train the data driven SVM based LPV identification algorithm.

A total of 926 operating points have been collected from the RCCI engine model.

This data set is now divided into a training and testing data sets. 65% of the data

is used for training the SVM based LPV identification algorithm while the rest 35%
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Figure 3.9: State outputs from the RCCI dynamic model N = 1000 RPM,
Tin = 60◦ C

Figure 3.10: Data driven SVM based LPV identification on validation data
set at N = 1000 RPM, Tin = 60◦ C

is used for testing the identified state-space model. The results of the validation of

identified LPV state-space representation are shown in Fig. 3.10.

As shown in Fig. 3.10, the mean error of the LPV state-space representation is 0.5

bar/CAD which is considered acceptable based on the statistical analysis performed
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in Section 3.3.3.

An example of A, B, C and D matrices for PR = 20 are shown in the following

equations:

A =



0.0203 0.0157 −0.0123 0.0152 −0.0069

−0.4793 0.3118 1.6990 0.0607 −0.2189

−0.1894 0.0452 0.7742 0.0139 −0.0162

0.0204 0.0168 −0.0512 0.0832 −0.0009

0.0221 0.0552 −0.0789 0.0276 −0.1690


(3.81)

B =



0.0386 −0.3369 0.3222

2.1636 −4.8719 13.3732

0.5935 0.0278 4.0693

0.2575 0.1000 0.1192

25.5645 0.2879 3.2134


(3.82)

C =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 (3.83)

D =

[
0

]
(3.84)

73





Chapter 4

Combustion Phasing and Load

Control with MPRR Limitation

This chapter discusses the development and testing of the Multiple Input Multiple

Output (MIMO) LPV - MPC for controlling the combustion phasing (CA50) and

engine load (IMEP) while limiting the MPRR of the RCCI engine.

4.1 Development of the LPV system

As shown in Section 3.7.3 a state-space representation was developed to fully define

the RCCI engine model presented in Section 3.6. The same state-space representation
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is used for the MIMO MPC developed in this section. Thus the states of the LPV

state-space are:

1. Crank Angle for 50% mass fraction burned (CA50)

2. Maximum Pressure Rise Rate within the combustion cycle (MPRR)

3. Temperature at Start of Combustion (Tsoc)

4. Pressure at Start of Combustion (Psoc)

5. Indicated Mean Effective Pressure (IMEP )

The states can then be expressed using the following Eq. (4.1) and Eq. (4.2) where

k represents discrete time.

Xk+1 = A(pk).Xk +B(pk).Uk (4.1)

Yk = C(pk).Xk +D.Uk (4.2)

where,

X =

[
CA50 MPRR Tsoc Psoc IMEP

]T
(4.3)

U =

[
SOI FQ

]T
(4.4)

pk =

[
PR

]
(4.5)
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Y =

[
CA50 MPRR IMEP

]T
(4.6)

Using the Data Driven SVM based LPV identification model presented in Section

3.7.2, an LPV system is developed for the dynamic RCCI engine model. The state

space matrices A(pk)andB(pk) are plotted against the scheduling parameter, PR in

Fig. 4.1 and Fig. 4.2

Figure 4.1: A(pk) vs scheduling parameter (PR)

Figure 4.2: A(pk) vs scheduling parameter (PR)

An example A(pk), B(pk), C(pk) and D(pk) for pk = 40 is shown in Eq. (4.7) to (4.10).
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These matrices represent the relationship between the states with themselves and the

inputs. They are updated at the beginning of every cycle based on the scheduling

parameter, PR.

A =



0.0347 0.0024 0.0195 0.0146 −0.0026

−0.1198 0.6699 0.5719 0.0685 0.0031

−0.0271 0.1624 0.3839 0.0088 0.0455

0.0202 0.0150 −0.0676 0.1260 0.0060

0.0356 0.2247 −0.4759 0.0428 −0.1097


(4.7)

B =



−0.1129 −0.4212 0.3710

−1.0282 −1.6608 6.9155

−0.2619 0.6870 2.6769

0.1914 0.2281 0.2595

24.8187 1.2000 0.8086


(4.8)

C =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 (4.9)
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D =


0 0

0 0

0 0

 (4.10)

4.2 Model Predictive Controller (MPC)

4.2.1 Controller design

The MPC was developed using the MATLAB® Model Predictive Control™ toolbox.

The MPC is designed using a linear state space representation, similar to shown in

Eq. 4.11 and Eq. 4.12, that is used to calculate the current states and predict the

future plant outputs.

X(k + 1) = A.X(k) +B.U(k) (4.11)

Y (k) = C.X(k) +D.U(k) (4.12)

where, k denotes the control step, X is a vector of states, Y is a vector of outputs, A

is a n× n matrix, B is a n×m matrix, C is a q× n matrix and D is a q×m matrix

where n is the number of states, m is the number of inputs and q is the number of

output states.

79



The controller solves a Quadratic Problem (QP) at each time step to optimize the

manipulated variable adjustments. It solves the QP subject to the constraints defined

on the inputs and the outputs. The optimization problem is only solved over a

certain number of future control time steps, called the prediction horizon. During

each optimization, only a fixed number of control steps, called control horizon, are

optimized. Invariably, the size of the control and prediction horizons affect the run

time performance of the controller. The cost function used for the QP is shown in

the following equation:

J(zk) = Jy(zk) + J∆u(zk) + Jε(zk) (4.13)

where k is the control interval, zk is the QP decision as shown in Eq. 4.17 and Jy(zk)

is the cost function for reference tracking, J∆u(zk) is the cost function for manipulated

variable rate of change and Jε(zk) is the cost function for constraint violation. Each

of the cost functions are shown in the following equations:

Jy(zk) =

ny∑
j=1

p∑
i=1

{W y
i,j

Syj
[rj(k + i|k)− yj(k + i|k)]

}2

(4.14)

J∆u(zk) =
nu∑
j=1

p−1∑
i=0

{W∆u
i,j

Suj
[uj(k + i|k)− uj(k + i− 1|k)]

}2

(4.15)

Jε(zk) = ρεε
2
k (4.16)

where p is the prediction horizon, ny is the number of output states, nu is the number
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of manipulated variables, yj(k + i|k) is the predicted value of the jth plant output at

the ith prediction horizon step, rj(k+ i|K) is the reference value for jth plant output

at the ith prediction horizon step, Syj is the scale factor for jth plant output, W y
i,j is

the tuning weight of the jth plant output at the ith prediction horizon step, Suj is the

scale factor for jth manipulated variable, W u
i,j is the tuning weight for jth manipulated

variable at the ith prediction horizon step and ρε is the constraint violation penalty

weight.

zTk = [u(k|k)T u(k + 1|k)T ...u(k + p− 1|k)T εk] (4.17)

Where εk is the slack variable at control interval k.

The MPC evaluates constraints at every control step. The following constraints are

applied on the MPC:

Yj,min(i)

Syj
− εkV y

j,min(i) ≤ Yj(k + i|k)

Syj
≤ yj,max(i)

syj
+ εkV

y
j,max(i),

i = 1 : p, j = 1 : ny

(4.18)

uj,min(i)

Suj
− εkV u

j,min(i) ≤ uj(k + i− 1|k)

Suj
≤ uj,max(i)

Suj
+ εkV

u
j,max(i),

i = 1 : p, j = 1 : nu

(4.19)

∆uj,min(i)

Suj
− εkV ∆u

j,min(i) ≤ ∆uj(k + i− 1|k)

Suj
≤ ∆uj,max(i)

Suj
+ εkV

∆u
j,max(i),

i = 1 : p, j = 1 : nu

(4.20)
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where Yj,min(i) and Yj,max(i) are the constraints on outputs, uj,min(i) and uj,max(i)

are the constraints on manipulated variables and ∆uj,min(i) and ∆uj,max(i) are the

constraints on rate of change of manipulated variables.

In this work, the control step is defined as one engine cycle. The prediction horizon

and control horizons for the MPC in this work are 5 and 2 engine cycles, respectively.

An adaptive MPC was used to achieve the control of CA50 and IMEP while keeping

the MPRR restricted. The reason for using adaptive MPC is so that a single controller

can be used with a changing LPV system. A built-in Kalman filter within the adaptive

MPC is used to estimate the unmeasured states. The schematic of the MPC setup is

shown in Fig. 4.3. The LPV subsystem updates the state space representation based

on the value of the scheduling parameter, PR, at the beginning of every engine cycle.

The adaptive MPC then manipulates SOI and FQ to track CA50 and IMEP along

the reference values while maintaining the MPRR at a pre-determined limit. The

built-in Kalman filter updates the adaptive MPC with the states of the plant at the

beginning of every engine cycle.
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Input [units] Min Max
SOI [bTDC] 70 0

FQ [mg/cycle] 0 35

Table 4.1
Input constraints

Output [units] Min Max
CA50 [aTDC] -20 20

MPRR [bar/CAD] 0 5.5
IMEP [KPa] 0 800

Table 4.2
Output constraints

Taking advantage of MPC’s ability to constrain inputs and outputs, constraints have

been applied on both inputs and outputs as shown in Tables 4.1 and 4.2

The constraints on SOI, FQ, CA50 and IMEP are based on the experimental data

that was used to validate the RCCI engine dynamic model. The constraints on MPRR

however are based on the desired limit for the Maximum Pressure Rise Rate. In order

to test MPC’s performance the limit for MPRR is chosen to be 5.8 bar/CAD based

on the data used to generate the LPV system.

4.2.2 Tracking performance

The MPC is setup to track CA50 and IMEP along a reference signal. The results of

the tracking are shown in Fig. 4.4. The MPC is able to track the required CA50 and

IMEP with mean error of 0.3 and 4.9 KPa respectively. However, it can be seen that
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at cycles 48 to 50, the MPRR exceeds 5.8 bar/CAD.

The MPC is now setup to track CA50 and IMEP while limiting the MPRR to 5.8

bar/CAD. The results of tracking are shown in Fig. 4.5. The MPC is able to track

the required CA50 and IMEP with mean error of 0.4 CAD and 4.9 KPa respectively

while keeping MPRR below 5.8 bar/CAD.

A measurement noise is then added into the CA50, IMEP and MPRR measure-

ments to test the controller’s performance. The dynamic RCCI engine model is then

simulated with the MPC limiting the MPRR to 5.8 bar/CAD. The results of this

simulation are shown in Fig. 4.6. It can be seen that the MPC is able to restrict

the MPRR below 5.8 bar/CAD. The controller is able to track the desired CA50 and

IMEP with an average error of 0.9 CAD and 4.7 KPa, respectively, while maintaining

the MPRR below 5.8 bar/CAD.

However, when the controller is pushed by increasing the reference IMEP above 650

KPa (6.5 bar), the tracking performance of the controller decreases drastically as

shown in Fig. 4.7(a). Though the MPC is able to restrict the MPRR to 5.8 bar/CAD,

the performance of CA50 is heavily affected.
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Figure 4.4: CA50 and IMEP tracking without MPRR limitation. Magenta
colored dotted lines show the bounds for Inputs and Outputs
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Figure 4.5: CA50 and IMEP tracking with MPRR limitation. Magenta
colored dotted lines show the bounds for Inputs and Outputs
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Figure 4.6: CA50 and IMEP tracking with MPRR limitation and noise.
Magenta colored dotted lines show the bounds for Inputs and Outputs
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Figure 4.7: CA50 and IMEP tracking with MPRR limitation. Magenta
colored dotted lines show the bounds for Inputs and Outputs.
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4.3 Motivation for split DI fuel injection

As demonstrated in the previous Section 4.2.2 the MPC is able to restrict the MPRR

to a set limit. However, when it is pushed to reach higher loads, it loses performance.

The MPC has only two control variables and three controlled outputs. The two

control variables, Start of Injection (SOI) and Fuel Quantity (FQ) control CA50 and

IMEP directly. They both however affect MPRR too. When the SOI or the FQ

is restricted in order to meet the MPRR restriction, the CA50 or IMEP tracking

performance is lost. Hence, there is a need for a third control variable which would

allow for the independent control of CA50, IMEP and MPRR. The proposed control

variable for this purpose is split injection of the DI fuel.

By using two injections for the DI fuel and varying the amount of fuel in each injection,

it can effectively vary the stratification inside the combustion chamber allowing for

the control of MPRR and CA50 more independently.

Using split injections immediately affects the heat release rate profile within the

cylinder. The key to modeling split injection as a COM for predicting MPRR and

CA50 is to modify the existing MVM to represent the behaviour of split injection.

This strategy of injection will affect the SOC, CA50 and MPRR directly. In order to

capture the effects of split injection on CA50 and MPRR, the Wiebe function has to
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Figure 4.8: Heat Release Rate (HRR) modeling for split injection

be modified appropriately. Using a combination of multiple Wiebe functions based

on the type of combustion can be effective for this application [83]. Since diffusive

type combustion exists in RCCI combustion, a combination of three Wiebe functions

with weighing factors based on the fuel quantity in each injection can be used to

model the heat release rate during split injection. An example is shown in Fig. 4.8

where pilot fuel is the first injection and main referes to the second injection. The

effect of split injection on SOC can be captured by modifying the MKIM presented in

Section 3.3 to include the variation in φdi and CNmix with the injection timing. Due

to lack of experimental data on DI split injection in RCCI engines, this thesis does

not include the MPRR control using fuel injection split. However, the concept of the

model is presented in Appendix A and the controller development is the subject of

future studies.
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Chapter 5

Conclusions and Future work

5.1 Summary and Conclusions

In this work, a model for predicting the MPRR has been developed and included

into an existing dynamic RCCI engine model. This model was then used to develop

an MPC to control the RCCI engine model. Major contributions/findings from this

work are presented below.

† An experimental study was conducted on a modified 2.0L Ecotec engine capable

of RCCI combustion under naturally aspirated conditions. The pressure trace

from the combustion was analyzed to understand the effects of input parameters
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on the Maximum Pressure Rise Rate during combustion. It was found that SOI

had a significant impact on the MPRR as earlier SOI led to higher MPRR. FQ

and PR also had an effect on MPRR but their effects were more complex and

dependant on SOI.

† Another experimental analysis was performed to develop a combination of com-

bustion or input parameters that would characterize the heat release curves

during combustion. It was found that by using a combination of combustion

parameters such as φpfi, Xrg along with input parameters, SOI and PR, dif-

ferent combustion regimes’ operating points during RCCI combustion can be

separated. A summary of findings is given in Appendix B.

† A Control Oriented Model was developed for predicting the MPRR. A compar-

ison of double Wiebe function and single Wiebe function based mass fraction

burn profiles was conducted to determine which one was appropriate for the

purpose. The single Wiebe function was able to predict the MPRR with similar

accuracy as the double Wiebe function; thus, single wiebe function was favored

due its simplicity.

† An MPRR prediction model was developed using the first law of thermody-

namics. The model was able to predict the MPRR with an average accuracy

of 0.7 bar/CAD in steady state conditions and 1.5 bar/CAD in transient con-

ditions. This MPRR model was combined with an existing validated dynamic

RCCI engine model which included transient dynamics of residual gas and fuel
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transport.

† Using advanced techniques of machine learning and Support Vector Machines

(SVM) a data-driven LPV control model of RCCI including MPRR was devel-

oped. The LPV model uses the PR as the scheduling parameter. The model

was validated with the data generated by the dynamic RCCI engine model. It

was able to predict the CA50, IMEP and MPRR with average errors of 0.9

CAD, 3.3 KPa and 0.5 bar/CAD, respectively.

† A Multi Input Multi Output MPC was developed to work with the LPV repre-

sentation of the dynamic RCCI engine model. It was developed with a 5-step

prediction horizon and 2-step control horizon. Constraints were implemented

on the Manipulated Variables and the Controlled Variables. The controller was

able to track the CA50 and IMEP as required while keeping the MPRR below

5.5 bar/CAD. The average tracking errors for CA50 and IMEP were 1 CAD

and 4.6 KPa, respectively.

† The MPC was able to control CA50 and IMEP while limiting MPRR only in

a small operating range. When the reference IMEP was increased beyond 6.5

bar, the MPC would lose performance on CA50 tracking while maintaing the

MPRR limit. This is because the number of controlled variables is three and

the number of manipulated variables is two. Hence, there is a need to develop a

third manipulated variable which would help control CA50, IMEP and MPRR

independently.
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5.2 Future work

Based on the findings of this work, a few areas can be further explored in order to

improve the outcomes. They are listed as follows:

† The MPC developed can be deployed on a rapid prototyping system in the

engine test cell to validate it’s performance experimentally.

† A split injection control strategy can be explored in order to develop an addi-

tional manipulated variable that can be used to control the CA50, IMEP and

MPRR independently.

† It has been shown in previous work that PR can be a good manipulated vari-

able for CA50 control in certain conditions [3, 4]. Since, the PR is used as a

scheduling parameter in this work, it cannot be used as a manipulated variable.

Hence, if a new scheduling parameter can be found for the LPV representation,

it would allow for the use of both PR and SOI to control CA50 and MPRR.

The results presented in the Appendix A can be of utility for this purpose.

† A stochastic MPC can be developed to account for the cyclic variability of

MPRR. The experimental analysis presented in Fig. 2.5 represents the cyclic

variability as a function of the input parameters. This can be used to develop

a model to account for the variability in MPRR. The same study can help
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develop a noise model for the Kalman filter that can help tackle the variability

in MPRR.

† Using the results presented in Fig. 2.5, the state space coefficient K(pk) shown

in Eq. (3.45) can be developed. The data driven approach can account for

the variation in MPRR as a noise and model that can be built into the LPV

representation. This would help develop an MPC that can accurately predict

the MPRR at each engine cycle.

† Given the successful implementation of the data driven system identification

method, it can be used to develop an LPV system for exhaust gas tempera-

ture and engine-out emissions. This can then be used to develop an MPC to

restrict the tailpipe emissions or maintain the minimum required exhaust gas

temperature to avoid the light-off of the after treatment components.
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Appendix A

Control Oriented Modeling of split

injection in RCCI engines

From section 4.2.2, it is evident that a single injection is not sufficient to control

MPRR and CA50 independently. Hence a split injection strategy for Direct Injection

is proposed. Using 2 injections brings in multiple parameters for control such as the

injection timing and the ratio of fuels injected in each injection. The parameters used

to define split injection are listed below:

1. Pilot injection: It is the first injection after IVC.

2. Main injection: It is the second injection after IVC. It can occur at any time

after the pilot injection has ended.
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3. Ratio of fuel injected to total fuel (ρ): The amount of fuel injected in each

injection is represented using Eq. A.1 and A.2

ρpilot =
FQpilot

FQDI

.100 (A.1)

ρmain =
FQmain

FQDI

.100 (A.2)

Using the parameters defined above, split injection can be easily described.

A.1 Wiebe function modeling for Split injection

As presented in this work a wiebe function can be used to model the MFB and con-

sequently the heat release rate from the fuel. However, when there are two injections

involved, a single wiebe function is not sufficient to model the heat release curve.

It requires the use of multiple wiebe functions. Each Direct Injection can be repre-

sented using a wiebe function. If the combustion has a diffusive behaviour then an

additional wiebe function is required to model it [83]. Since, RCCI combustion has

diffusive type behaviour, 3 wiebe functions have to be used to model split injection.

Eq. A.3 represents the equation that is used to model the wiebe function for split
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Figure A.1: HRR modeling for split injection

injection.

Xb(θ) =
i=3∑
i=1

p1.

(
1− exp

[
−
(
θ − θSOCi
α∆θi

)mi])
(A.3)

where i = 1,2,3 represent the wiebe function for pilot, main and diffusive combustion

respectively. Also,
3∑
i=1

pi = 1 (A.4)

An example for split injection modeling with 3 wiebe functions is shown in Fig. A.1
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A.2 Modifying MKIM for split injection

θsoc for each wiebe function are predicted by modifying the MKIM presented in section

3.3. The MKIM currently being used for single injection is shown in Eq. A.5

∫ SOC

SOI

dθ

A2N
(
φB2DI
DI + φB2PFI

PFI

)
exp

(
C2

CNmix+b
(Pivcv

nc
c )D2

Tivcv
nc−1
c

)+

∫ SOI

IV C

dθ

A1NφBPFIexp
(
C1(Pivcv

nc
c )D1

Tivcv
nc−1
c

) = 1

(A.5)

When the MKIM is used for single injection, the assumption is that the φDI doesn’t

change from SOI to SOC. However, when split injection is used, the amount of DI

fuel in the combustion chamber varies from SOIpilot to SOC. This also affects the

CNmix. Hence, they both have to be defined as a function of θ.

φDI =

{
φDIpilot SOIpilot < θ < SOImain

φDI θ > SOImain

(A.6)

CNmix =
FARst,nhepφdiCNnhep + FARst,isoφPFICNiso

FARst,nhepφDI + FARst,isoφPFI
(A.7)

These changes to the definitions of φDI and CNmix as shown in Eq. A.6 and Eq. A.7

enable the MKIM to detect SOC accurately. However, there are two cases that can

happen when split injection is used.
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1. SOImain before SOC detected by MKIM

If the main injection happens before the MKIM detects the SOC, then,

SOCpilot = SOCmain (A.8)

2. SOImain after SOC detected by MKIM

If the main injection happens after MKIM detects the SOC, then,

SOCmain = SOCpilot + ID (A.9)

where

ID =
K

CNmix

(A.10)

where K is a constant that needs to be parametrized.

An example of variation in SOCpilot and SOCmain based on SOIpilot and SOImain is

shown in Fig. A.2

It can be seen in the Fig. A.2 that when SOImain is after SOCpilot, there is a delay

from SOCpilot to SOCmain. Also, when comparing SOCpilot between Fig. A.2 (a),

(b) and (c), it can be seen that the SOCpilot is advanced when ρpilot is higher. This

potentially gives the opportunity to use ρ as a manipulated variable to control SOC.
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(a) ρpilot = 10%

(b) ρpilot = 50%

(c) ρpilot = 90%

Figure A.2: Effect of ρ and SOI on SOC
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Appendix B

Combustion regime separation in

RCCI combustion

In section 3.7 and 4.1 an LPV representation of the dynamic RCCI model was dis-

cussed. The scheduling parameter that is used is Premixed Ratio (PR) which is also

a known manipulated variable for CA50 control [3, 4]. But, using PR as a scheduling

parameter inhibits it from being used as a manipulated variable. This is because the

scheduling parameter defines the LPV representation and when the controller manip-

ulates this parameter, it effectively changes the state space representation that defines

the plant near that operating point. This leads to inaccuracies during control. Hence,

a new scheduling parameter that can be used to define the plant’s non linearity is

required so that PR can be used as a manipulated variable.
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Figure B.1: Different combustion regimes seen during RCCI operation
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In order to explore a scheduling parameter, it is important to understand how the

plant varies in order to pick the right parameter or combination of parameters. Fig.

B.1 represents the different combustion regimes encountered in RCCI combustion. In

principle, if a parameter or combination of parameters could separate the operating

points leading to each of these combustion regimes, that would be an ideal scheduling

parameter.

Fig. B.2 shows how different input and intermediate parameters effect the heat re-

lease shapes. Other parameters such as Pin, Tin, Psoc, Tsoc, Xrg etc., were explored for

differentiating between the different combustion regimes. However, just like the pa-

rameters in Fig. B.2 none showed a clear distinction between the different combustion

regimes.

Hence, a combination of different parameters needs to be explored in order to sepa-

rate the different combustion regimes that occur during RCCI operation. Fig. B.3

represents an attempt to do the same. The X-axis is a function of φpfi and the Y-axis

is a function of SOI, PR,Xrg. The figure shows that the combustion regimes can be

localized into one specific combination of the X and Y values. However, there are

more intermediate parameters that can be explored to reach a combination of func-

tions that would clearly distinguish between the combustion regimes. A combination

of those function would be an ideal scheduling parameter for the LPV representation

of the dynamic RCCI engine model.
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(a) Effect of SOI

(b) Effect of FQ

(c) Effect of PR

(d) Effect of SOC

Figure B.2: Effect of different parameters on heat release shape
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Figure B.3: Combustion regime separation

125





Appendix C

Experimental Data used for

Parametrizing the MVM for

MPRR

C.1 Data used for parametrizing the MVM for

MPRR
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C.2 Data used for validating the MVM for MPRR
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Appendix D

Programs and data files summary

D.1 Chapter 1

File Name File Description

LTC Comparison.jpg Figure 1.1
Operating Points.jpg Figure 1.2

Sadabadi Controller.jpg Figure 1.5
PI Controller Arora.jpg Figure 1.6

Table D.1
Figure Files

File Name File Description

CLCC RCCI litreview dynamics.vsd Figure 1.2
CLCC RCCI litreview controls.vsd Figure 1.4

Thesis Organisation.vsdx Figure 1.7

Table D.2
Visio Files
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D.2 Chapter 2

File Name File Description

New LTC Engine Setup.vsdx Figure 2.1
exp setup 2.vsdx Figure 2.2

Data Acquisition.vsdx Figure 2.3

Table D.3
Visio Files

File Name File Description

MPRR Plotting Figure 2.4
MPRR std Plotting Figure 2.5

Table D.4
Plot files

D.3 Chapter 3

File Name File Description

HR Analysis.m Matlab code for creating plots in Fig 3.1
MPRR modeling.m Matlab code for creating plots in Fig. 3.2 and 3.3
MPRR Transient.m Matlab code for creating plots in Fig. 3.5 and 3.4

Statistical Analysis.m Matlab code for generating plots in Fig. 3.6
LPVmodelling.m Matlab code for creating plots in Fig. 3.8, 3.9 and 3.10

Table D.5
Plot Files
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D.4 Chapter 4

File Name File Description

LPV MPC Visualization.m Matlab file for plots in Fig. 4.1, 4.2,
4.4, 4.5, 4.6 and 4.7

Split Injection Wiebe.m Matlab file for plot in Fig. 4.8

Table D.6
Plot Files

File Name File Description

MPC Control Model Schematic.vsdx Figure 4.3

Table D.7
Visio Files

D.5 Appendix A

File Name File Description

Split Injection Wiebe.m Matlab file for plot in Fig. 4.8
Split MPRR Visualization.m Matlab file for plot in Fig. A.2

Table D.8
Plot Files

D.6 Appendix B
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File Name File Description

Plotting HRR.m Matlab file for plots in Fig. B.1
HRR Effects Matlab file for plot in Fig. B.2

Scheduling Parameter final.m Matlab file for plot in Fig. B.3

Table D.9
Plot Files
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Appendix E

Letters of Permission

For figure 1.1

Figure E.1: Letter of permission
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For figure 1.3

Figure E.2: Letter of permission
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